Communication to the Editor

ENZYMIC SYNTHESIS OF VALIENAMINE GLUCOSIDES AND THEIR ANTIBIOTIC ACTIVITY

Sir:

Although glycosidases have long been known to catalyse the stereospecific formation of glycosidic bonds by reversed hydrolysis or transglycosidation, the predominant formation of $(1 \sim 6)$ linkages and the difficulties in the isolation of products have prevented their wider use for synthesis of biologically active carbohydrates. However, the regioselectivity of glycosidase-catalysed formation of oligosaccharides can be manipulated in certain situations by using the appropriate glycosidases and acceptors, and the isolation of products simplified in many reports^{1~3)}. We also have reported on microbial glycosidation to form validamycin α - and β -D-glucoside analogs with the yeast, *Rhodotorula lactosa* IFO 1424^{4,5)}. Thus, we attempted to prepare α - and

 β -D-glucosides of valienamine with glucosidases.

Valienamine (Fig. 1), a pseudo-aminosugar produced by the microbial degradation of validamycins by several soil bacteria^{6,7)}, is a competitive α -glucosidase inhibitor, active against yeast- α -glucosidase, invertase and *Rhizopus*- α -glucoamylase, and it shows some antibiotic activity against *Bacillus* sp.⁸⁾

This report deals with the enzymic preparation of α - and β -D-glucoside analogs of valienamine and their antibiotic activity.

For the preparation of partially purified α - and β -glucosidases of *R. lactosa*, cell suspension (400 g) in 20 mM sodium phosphate buffer (pH 6.0) was ruptured with a sonic oscillator and the cell debris were removed by centrifugation at 13,000 × g for 10 minutes. Ammonium sulfate was added to the supernatant and the precipitate at 0.9 saturation was dissolved in 5 mM phosphate buffer. The solution was put on a DEAE-cellulose column (2.6 × 95 cm)

Fig. 1. Structure of α - and β -D-glucosides of valienamine.

		R ₁	R ₂	R ₃
	Valienamine	Н	Н	Н
CH ₂ OR ₁	VE-α-1	Н	α-Glc	Н
1.2014	VE-α-2	Н	α-Isomal	Н
4 3 2	VE-α-3	α-Glc	Н	Н
0	VE-a-4	α-Isomal	Н	Н
R ₂ O R ₃ O	$VE-\beta-1$	β -Glc	Н	Н
NH ₂	VE-β-2	Н	н	β -Glc
-	$VE-\beta-3$	н	β -Glc	H

Glc: D-Glucosyl, Isomal: D-isomaltosyl.

Table	1.	Selected	physico-chemical	properties	of α - and	β -D-glucosides of	valienamine.

Compound	$[\alpha]_{\rm D}^{25} ({\rm H_2O})$	TLC Rf ^a	GLC Rt ^b (minutes)	¹ H NMR, in D_2O^c anomeric proton $(\delta, J=Hz)$
VE-α-1	+126.4°	0.55	2.6	5.41 (3.9)
VE-α-2	$+160.6^{\circ}$	0.33	27.2	5.43 (3.7), 4.96 (3.7)
VE-α-3	$+144.4^{\circ}$	0.48	3.7	4.91 (3.7)
VE-α-4	+137.6°	0.27	33.9	4.94 (3.8), 4.92 (3.7)
VE-β-1	$+31.8^{\circ}$	0.46	3.7	4.9 (8.1)
VE-β-2	$+30.2^{\circ}$	0.57	2.5	4.64 (7.7)
VE-β-3	$+28.4^{\circ}$	0.57	2.7	4.64 (8.3)
Valienamine	$+81.6^{\circ}$	0.68		

^a Solvent: CHCl₃ - MeOH - 29% NH₄OH (1:3:2), Silica gel G.

^b 7% OV-17, 2 m, 280°C TMS-derivatives.

° At 400 MHz with TMS standard.

Carlan	VE		α-Glucosides			β -Glucosides		
Carbon	VE	VE-a-1	VE-α-2	VE-a-3	VE-α-4	VE-β-1	VE-β-2	VE-β-3
C-1	51.7	51.0	51.0	51.8	51.8	51.8	51.1	51.2
C-2	127.2	128.0	128.7	129.6	128.8	129.2	126.0	128.5
C-3	142.0	140.6	140.2	139.5	140.0	140.0	142.6	140.5
C-4	74.7	<u>79.5</u>	<u>79:8</u>	74.1	73.8	74.3	73.7	<u>84.7</u>
C-5	74.9	73.5	74.2	74.8	74.7	74.7	74.0	73.5
C-6	72.9	72.2	73.6	72.4	72.2	72.3	82.7	72.2
C-7	64.1	64.5	64.6	68.9	68.8	72.6	64.1	64.3
C-1′		100.6	100.8	99.1	99.1	104.9	106.2	106.3
C-2′		74.1	74.2	73.9	74.2	75.9	76.0	76.1
C-3′		75.7	75.8	75.8	76.0	78.4	78.3	78.4
C-4'		72.1	72.1	72.3	72.2	72.4	72.1	72.1
C-5′		75.4	72.4	74.6	73.0	78.6	78.5	78.7
C-6'		63.2	68.5	63.2	68.2	63.4	63.2	63.4
C-1″			100.6		100.6			
C-2″			74.0		74.0			
C-3″			75.9		75.8			
C-4"			72.2		72.0			
C-5″			74.5		74.6			
C-6″			63.2		63.2			

Table 2. ¹³C NMR data of α - and β -D-glucosides of valienamine.

Chemical shifts are in ppm downfield of DSS. 13 C NMR spectra were taken in D₂O on a Jeol JNM-GX 400 spectrometer.

equilibrated with the buffer. The column was washed with 10 mM buffer and eluted with the buffer containing 50 mM NaCl. The α -glucosidase fraction (72.6 U/maltose, 0.12 U/mg·protein) and β -glucosidase fraction (63.5 U/cellobiose, 0.22 U/mg·protein) were obtained.

 α -(or β -)Glucosidation reaction of valienamine was accomplished as follows. Reaction mixture (500 ml) containing valienamine (2.5 g), maltose (100 g, or cellobiose 50 g) and the α -glucosidase fraction (50 U, or the β -glucosidase fraction) in 40 mм acetate buffer (pH 5.0) was incubated at 27°C for 72 hours. The glycosidation process was followed by TLC (silica gel, CHCl₃-MeOH-29% NH₄OH, 1:3:2) and gas-liquid chromatography (GLC, trimethylsilyl derivatives, 7% OV-17 on Chromosorb AW, 280°C)⁹⁾. The products were isolated by column chromatography on Dowex 50WX8 (H form, 1.6×60 cm), eluted with 0.5 NH₄OH and then on Dowex 1X2 (OH from, 1.0×70 cm) and eluted with water. The reaction of α -glucosidation gave four components, VE- α -1 (301 mg), VE- α -2 (90 mg), VE- α -3 (32 mg) and VE- α -4 (22 mg) as amorphous materials which are distinguishable from each other and homogeneous by the TLC and GLC. β -Glucosidation gave three components, VE- β -1 (180 mg), VE- β -2 (138 mg) and VE- β -3 (60 mg). Selected physico-chemical properties and NMR

	Diameter of inhibition zones (10 mg/ml) ^a						
Compound	Bacillus subtilis	B. cereus	B. megaterium				
VE-α-1	25 mm	21 mm	23 mm				
VE-α-2	20	19	20				
VE-α-3	26	19	24				
VE-α-4	13	+	12				
VE-β-1	0	0	0				
VE-β-2	0	0	0				
$VE-\beta-3$	0	0	0				
Valienamine	(26) ^b	(21) ^b	(24) ^b				

Table 3. Antibacterial activity of valienamine glucosides in agar diffusion assay with nutrient broth.

^a Nutrient agar (Nissui), 24 hours incubation at 37°C, compound 500 μg/disc (diameter 8 mm).

^b Indicates inhibitory zones were not clear.

chemical shifts of the valienamine glucosides are listed in Tables 1 and 2. Complete signal assignment of ¹³C NMR spectra was almost made by comparing each spectrum with corresponding α -glucotrioses and α -glucobioses^{10,11}. Their shift patterns were consistent with the known effects of glucosidation (underlined in Table 2), including β - and γ -effects of the olefinic carbons at the allylic position¹². The ¹³C resonance shifts produced by changes of pD were useful for the assignment. Deuteronation of amino groups caused large upfield shifts of the signals which are β - to the amino groups¹³⁾. For example, the chemical shifts of C-2 and C-6 in VE- β -2 were shifted upfield by 7.9 and 4.6 ppm, respectively by protonation. Further confirmation of spectral assignment was achieved from ¹³C-¹H COSY experiments. The structures are depicted in Fig. 1.

As shown in Table 3, the α -D-glucosides of valienamine have some antibacterial activity against *Bacillus* sp. on nutrient agar medium by the paperdisc method (concentration 10 mg/ml, 500 μ g/disc) as well as valienamine and showed clear inhibition zones, while valienamine showed hazy zones, incomplete inhibition. However, the β -D-glucosides showed no inhibitory zone.

> Tadashi Furumoto Tadashi Yoshioka Kanae Kamata Yukihiko Kameda Katsuhiko Matsui

School of Pharmacy, Hokuriku University, Kanazawa 920-11, Japan

(Received October 20, 1990)

References

- USUI, T. & T. MURATA: Enzymatic synthesis of p-nitrophenyl α-maltopentaoside in an aqueousmethanol solvent system by maltotetraose-forming amylase: A substrate for human amylase in serum. J. Biochem. 103: 969~972, 1988
- EZURE, Y.: Enzymatic synthesis of 4-O-α-D-glucopyranosyl-moranoline. Agric. Biol. Chem. 49: 2159~ 2165, 1985

- NILSSON, KURT G. I.: A simple strategy for changing the regioselectivity of glycosidase-catalysed formation of disaccharides. Carbohydr. Res. 180: 53~59, 1988
- KAMEDA, Y.; N. ASANO & T. HASHIMOTO: Microbial glycosidation of validamycins. J. Antibiotics 31: 936~938, 1978
- 5) KAMEDA, Y.; N. ASANO, O. WAKAE & T. IWASA: Microbial glycosidation of validamycins. II. The preparation of α and β-D-glucoside analogs of validamycins. J. Antibiotics 33: 764~766, 1980
- KAMEDA, Y. & S. HORII: The unsaturated cyclitol part of the new antibiotics, validamycins. J. Chem. Soc. Chem. Commun. 1972: 746~747, 1972
- KAMEDA, Y.; N. ASANO, M. TERANISHI & K. MATSUI: New cyclitols, degradation of validamycin A by *Flavobacterium saccharophilum* J. Antibiotics 33: 1573~1574, 1980
- KAMEDA, Y.; N. ASANO, M. YOSHIKAWA & K. MATSUI: Valienamine as an α-glucosidase inhibitor. J. Antibiotics 33: 1575~1576, 1980
- 9) HORII, S.; Y. KAMEDA & K. KAWAHARA: Studies on validamycins, new antibiotics. VIII. Isolation and characterization of validamycins C, D, E and F. J. Antibiotics 25: 48~53, 1972
- USUI, T.; N. YAMAOKA, K. MATSUDA, K. TUZIMURA, H. SUGIYAMA & S. SETO: ¹³C nuclear magnetic resonance spectra of glucobiose, glucotriose and glucans. J. Chem. Soc. Chem. Commun. 1973: 2425, 1973
- BRADBURY, J. H. & G. A. JENKINS: Determination of the structure of trisaccharides by ¹³C-NMR spectroscopy. Carbohydr. Res. 126: 125~156, 1984
- YAMASAKI, K.; H. KOHDA, T. KOBAYASHI, R. KASAI & Y. SUHARA: Structures of stevia diterpenglucosides: Application of ¹³C NMR. Tetrahedron Lett. 1976: 1005~1008, 1976
- 13) KOCH, K. F.; J. A. RHOADES, E. W. HAGAMAN & E. WENKERT: Carbon-13 nuclear magnetic resonance spectral analysis of tobramycin and related antibiotics. J. Am. Chem. Soc. 96: 3300 ~ 3305, 1974